Skip to content
IBAGS
IBAGS
  • Home
  • Conferences
  • News
  • IBAGS Council
  • Honorary Members
  • About
IBAGS
IBAGS
  • Conferences
  • IBAGS Council:
  • IBAGS Honorary Members
  • International Basal Ganglia Society
  • News
  • WELCOME TO THE INTERNATIONAL BASAL GANGLIA SOCIETY (IBAGS)

IBAGS Council:

Officers

Angela Cenci Nilsson

President

    Gilberto Fisone

    Secretary

      Yoland Smith

      Treasurer

        John Reynolds

        President Elect

          Louise Parr-Brownlie

          Secretary Elect

            Thomas Boraud

            Past president

              Councillors

              Fumino Fujiyama

                Jill R Crittenden

                 

                  Nicole Calakos

                    Natalie M Doig

                      Elaine Del Bel

                        Joshua Goldberg

                          Christelle Baunez

                            Ledia F. Hernandez

                              José Luis Lanciego

                                Wolf-Julian Neumann

                                  Veronique Sgambato

                                    Raffaella Tonini

                                      Copyright © 2023 IBAGS

                                      We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
                                      Cookie SettingsAccept All
                                      Manage consent

                                      Privacy Overview

                                      This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
                                      Necessary
                                      Always Enabled
                                      Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
                                      CookieDurationDescription
                                      cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
                                      cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
                                      cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
                                      cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
                                      cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
                                      viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
                                      Functional
                                      Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
                                      Performance
                                      Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
                                      Analytics
                                      Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
                                      Advertisement
                                      Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
                                      Others
                                      Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
                                      SAVE & ACCEPT
                                      Angela Cenci Nilsson
                                      President

                                      I am a Professor of Experimental Medical Research at Lund University. After studying Medicine and Neurology in Italy, I moved to Sweden to pursue basic and translational research on basal ganglia disorders (particularly on Parkinson’s disease). To this end, our group developed rodent models reproducing key features of human movement disorders and used these models to uncover basic disease mechanisms and therapeutic targets. I have commissions of trust at several national and international organisations that support translational research on Parkinson’s disease and related disorders.

                                      Close
                                      Gilberto Fisone
                                      Secretary

                                      We study molecular and signal transduction mechanisms underlying neurotransmission in the basal ganglia. During the last two decades we identified key molecular events involved in the effects of various classes of drugs, including addictive substances and antipsychotic medications. We are also studying signal transduction abnormalities linked to motor and psychiatric complications caused by prolonged administration of antiparkinsonian drugs. More recently, we developed models of Parkinson’s disease to study the molecular and network alterations at the basis of non-motor symptoms, which include cognitive and affective disorders.

                                      Close
                                      Yoland Smith
                                      Treasurer

                                      Our research program aims at elucidating the neuroplasticity of cortical and subcortical brain circuits associated with the development of parkinsonism in nonhuman primate models of Parkinson’s disease.

                                      Close
                                      John Reynolds
                                      President Elect

                                      John Reynolds initially had careers in medical electronics and then clinical Medicine and then completed a PhD in Neuroscience at University of Otago. His focus is in vivo approaches to brain disorders, learning models and circuit connectivity using electrophysiological recording methods and behavioural analyses. His interests have been in synaptic plasticity recorded in single neurons in the basal ganglia and in the role of dopamine and acetylcholine in the whole animal. He has recently extended this work to translational approaches to Parkinson’s disease in rodent and sheep models and is developing advanced neurostimulation and drug delivery approaches for progressive translation to humans.

                                      Close
                                      Louise Parr-Brownlie
                                      Secretary Elect

                                      Louise Parr-Brownlie (Ngāti Maniapoto me Te Arawa) was a postdoctoral fellow at the National Institutes of Health in the United States before joining the Department of Anatomy at the University of Otago in 2010. Louise is a neurophysiologist investigating how neuronal activity in the basal ganglia, motor thalamus and motor cortex controls movement, and characterising changes associated with Parkinson’s disease. Recently, she has investigated the utility of optogenetic stimulation applied to the motor thalamus to recover movements in parkinsonian models. Louise has also worked with bioengineers to develop an implantable light-based device for continuous brain stimulation over 6 months, which is commercially available.

                                      Close
                                      Fumino Fujiyama

                                      I am a Professor of Laboratory of Histology and Cytology, Faculty of Medicine at Hokkaido University. After working as a neurologist, I switched to basic research. Our research group is introducing a variety of experimental methods using morphology, electrophysiology, and genetic engineering. Examples include specific neuron labeling with recombinant viral vectors, neural reconstruction using confocal laser microscopy and neurolsida, in vitro whole cell patch clamp recording and in vivo electrophysiological and behavioral experiments combined with optogenetics. By combining static approaches with dynamic ones, we hope to contribute to the understanding of the pathophysiology of neurodegenerative diseases in which specific nerve systems are injured and to their therapeutic applications.

                                      Close
                                      Jill R Crittenden

                                      I am a Scientific Advisor at MIT with a background in the molecular and anatomical bases of basal ganglia function and dysfunction. My areas of focus, with an eye to public outreach, now include basal ganglia disorders, addiction, brain-body interactions and neurotechnology.

                                      Close
                                      Nicole Calakos

                                      Nicole Calakos, M.D., Ph.D. is a physician-scientist who cares for patients with Movement Disorders and maintains an active laboratory research program. Dr. Calakos is the Lincoln Financial Group Professor of Neurology and Neurobiology and Chief of the Movement Disorders section in Neurology at Duke University Medical Center. Her laboratory studies how synaptic plasticity generates learning and adaptive behavior; and how its disruption causes diseases of the basal ganglia circuitry. The Calakos lab is widely recognized for its contributions to understanding habit formation, compulsive behavior and dystonia and for the generation of new methodologies to study basal ganglia physiology.

                                      Dr. Calakos received her bachelor’s degree from the University of California at Berkeley, her M.D. and Ph.D. degrees from Stanford University, and residency training in Neurology at the University of California at San Francisco.

                                      Dr. Calakos’ contributions have been recognized through a number of awards, leadership and service opportunities. Dr. Calakos advocates for basic and translational neuroscience through activities that have included: the Board of Directors for the American Neurological Association, Governance Committee for the Duke Institute for Brain Sciences, NIH study sections, and scientific advisory boards for Tourette’s Syndrome and Dystonia.

                                      https://www.neuro.duke.edu/research/faculty-labs/calakos-lab

                                      Close
                                      Natalie M Doig

                                      My research centres on the synaptic connectivity of inputs to, and nuclei within, the basal ganglia. My work also aims to determine network, cellular and molecular pathological changes underlying disease. After receiving my B.Sc. from the University of Otago in Dunedin, NZ, I joined the lab of Prof Paul Bolam at the University of Oxford. My thesis work focused on defining the cortical and thalamic inputs to striatal projection neurons and interneurons using anatomical and electrophysiological techniques. I returned to Oxford in 2014 to work with Prof Peter Magill to define the molecular and structural properties of distinct cell types in the basal ganglia and their partner brain circuits.

                                      Close
                                      Elaine Del Bel

                                      I am a Physiology Full Professor af the Department of Physiology at Dental School of Ribeirao Preto, University of São Paulo since 2013.  My interest is in unveiling new mechanisms involved in the pathophysiology of neurodegenerative and mental disorders such as Parkinson’s disease and schizophrenia. We for example have shown that cannabinoid system abnormalities could be associated with sensorimotor gating deficits observed in schizophrenic patients and that the nitric oxide synthase inhibitors (iNOS) and the antibiotic doxycycline prevents degeneration of dopamine neurons.

                                      Close
                                      Joshua Goldberg

                                      Our lab studies cellular and network physiology of basal gangalia and brain stem circuits in rodent models of movement disorders, with an emphasis in recent years on the pathophysiology of prodromal symptoms of PD. We combine slice electrophsyiolgy in conjunction with multphoton imaging and optogenetics, endoscopic imaging and mathemaical modeling.

                                      Close
                                      Christelle Baunez

                                      Dr. Christelle Baunez, is Directrice de Recherche at the CNRS, leader of the team ‘Basal Ganglia, Motivation and Reward’ (BAGAMORE) at the Institut de Neurosciences de la Timone (INT) in Marseille (France). During her PhD thesis in Marseille on behavioral studies of pharmacological interactions between glutamate and dopamine within the basal ganglia, she started to be interested in the subthalamic nucleus (STN) as a possible target for the treatment of Parkinson’s disease. During her post-doctoral internship at Cambridge University (UK) (supervised by Prof. T.W. Robbins), she focused on the involvement of the STN in non-motor functions. She revealed the involvement of STN in attention and control of inhibition. She got her permanent position at the CNRS in 1997 and pursued her research on the functions of the STN, developing deep brain stimulation in behaving rats. One of her major finding, published in Nature Neuroscience in 2005 and PNAS in 2010, was to show that STN lesion or DBS reduces motivation for cocaine, while increasing motivation for food, suggesting that STN DBS could be applied to treat addiction. The research in her team extends to non-human primate and parkinsonian patients and is mainly focused on motivation.

                                      She has published 69 articles in international journals and 8 book chapters. She has been invited to present her work at 102 international (71) and national (31) symposia. She has co-organized international meetings and symposia in international meetings. She has been awarded various international and national fundings and prizes. She has recently served as president of the scientific council of the Institute for Life sciences at the CNRS. She is Principal Editor for Psychopharmacology. She is member of the board of various international societies (EBPS, EWCBR, IBAGS) and is currently president of the scientific council of France Parkinson Association. She is very active at teaching and mentoring students at various levels. Has been part of many boards of grant reviews and PhD committees.

                                      Close
                                      Ledia F. Hernandez

                                      After completion of her Ph.D. in Neuroscience at UCM (Universidad Complutense de Madrid, Spain), Ledia received a Fulbright grant to pursue postdoctoral training in Ann Graybiel´s Lab at MIT, where she studied the role of striatal dopamine in learning and habitual behaviour. As an investigator in Spain, her research is focused on Parkinson’s Disease. She is currently testing a novel hypothesis for what might cause this disease: the continuous engagement of dopamine neurons in the substantia nigra pars compacta (SNc) in habitual behaviour as a significant stressor for this vulnerable neuronal group (Hernandez et al, TINS, 2019). She has received European (Marie Slodowska-Curie grant) and national funding to pursue her research.

                                      Toward a deeper understanding of the role of each striatal pathway in movement control and levodopa induced dyskinesias (LIDs), Ledia recently developed a new animal model using optogenetics to evoke “optodyskinesias” in normal and dopamine depleted states. Currently, she is developing strategies to prevent LIDs and deepen the knowledge behind the selective and early onset loss of dopaminergic neurons in the SNc.

                                      Close
                                      José Luis Lanciego

                                      I am an Associate Professor of Neurosciences at the University of Navarra and a Staff Scientist at the Center for Applied Medical Research (Cima). My research team focuses on translational research in the field of Parkinson’s disease and related synucleinopathies by taking advantage of gene therapy tools. Since December 2006 our group has been recognized as “group of excellence” by the Spanish Ministry of Health, therefore joining the so-called Research Network Center in Neurodegenerative Disorders (CiberNed) as a founding member.

                                      Close
                                      Wolf-Julian Neumann

                                      I am a clinician scientist (MD) at the Movement Disorders and Neuromodulation Unit at Charité Berlin. I have built an expertise in movement disorders, neurophysiology and deep brain stimulation. My strengths are the implementation of methods for multimodal and multidimensional data analysis for clinical neuroscience applications. My current work combines computational modelling, machine and deep learning, structural and functional connectomics (fMRI), invasive (LFP/ECoG) and non-invasive (EEG/MEG) neurophysiology, to develop the next-generation of intelligent clinical brain computer interfaces for patients with movement disorders.

                                      The challenge I am currently working on is to try and integrate insights from PD pathophyisology, basal ganglia function, dopamine and reinforcement learning into a holistic cortex – basal ganglia – circuit model.

                                      I am actively engaging in programs and activities that aim to improve the scientific landscapes in terms of openness, reproducibility, diversity, equity and inclusiveness.

                                      I am severely hearing impaired.

                                      Close
                                      Veronique Sgambato

                                      I am a tenured researcher at INSERM (National institute of Health and medical research) and team leader at CNRS (National Center for scientific research) in Bron, France. After studying neurosciences in France, Canada and United States, I came back to France to study Parkinson’s disease.  My research focuses on the pathophysiology of motor and non-motor symptoms of Parkinson’s disease, combining a clinical approach in patients and a preclinical approach in animals.

                                      Close
                                      Raffaella Tonini

                                      Raffaella Tonini leads the Neuromodulation of Cortical and Subcortical Circuits Lab, at the Italian Institute of Technology (IIT), Italy. Her research goal is to understand how the brain learns to cope with an ever-changing environment and to choose between different behavioral options. Within this context, her research team focuses on the role of neuromodulatory substances in shaping micro- and macro circuit interactions to ultimately report selective perceptual and motivational information over multiple timescales.

                                      Close